
Potential sensitivity of bias analysis results to incorrect 
assumptions of nondifferential or differential binary exposures 
misclassification

Candice Y. Johnsona,b, W. Dana Flandersa, Matthew J. Stricklanda, Margaret A. Honeinb, 
and Penelope P. Howardsa

aRollins School of Public Health and Laney Graduate School, Emory University, Atlanta, GA

bNational Center on Birth Defects and Developmental Disabilities, Centers for Disease Control 
and Prevention, Atlanta, GA

Abstract

Background—Results of bias analyses for exposure misclassification are dependent on 

assumptions made during analysis. We describe how adjustment for misclassification is affected 

by incorrect assumptions about whether sensitivity and specificity are the same (nondifferential) 

or different (differential) for cases and non-cases.

Methods—We adjusted for exposure misclassification using probabilistic bias analysis, under 

correct and incorrect assumptions about whether exposure misclassification was differential or 

not. First, we used simulated datasets in which nondifferential and differential misclassification 

were introduced. Then, we used data on obesity and diabetes from the National Health and 

Nutrition Examination Survey (NHANES) in which both self-reported (misclassified) and 

measured (true) obesity were available, using literature estimates of sensitivity and specificity to 

adjust for bias. The ratio of odds ratio (ROR; observed odds ratio divided by true odds ratio) was 

used to quantify magnitude of bias, with ROR=1 signifying no bias.

Results—In the simulated datasets, under incorrect assumptions (e.g., assuming nondifferential 

misclassification when it was truly differential), results were biased, with RORs ranging from 0.18 

to 2.46. In NHANES, results adjusted based on incorrect assumptions also produced biased 

results, with RORs ranging from 1.26 to 1.55; results were more biased when making these 

adjustments than when using the misclassified exposure values (ROR=0.91).

Conclusions—Making an incorrect assumption about nondifferential or differential exposure 

misclassification in bias analyses can lead to more biased results than if no adjustment is 

performed. In our analyses, incorporating uncertainty using probabilistic bias analysis was not 

sufficient to overcome this problem.

Bias analysis (sensitivity analysis) has been proposed as an improvement over the 

qualitative descriptions of study limitations and potential sources of bias typically provided 

by investigators, in which potential effects of systematic error, and not only random error, 
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are quantified.1 The quantitative nature of these analyses allows a more transparent 

assessment of the potential direction and magnitude of bias and also guards against the 

tendency of investigators to favor causation over bias as the most likely explanation for 

observed results.2,3 Some investigators have advocated greater incorporation of quantitative 

analyses for exposure misclassification and other forms of bias, 4–8 and many examples are 

now available in the published literature.9–14

Bias analysis for exposure misclassification involves identifying potential sources of 

misclassification, estimating bias parameters (e.g., sensitivity [Se] and specificity [Sp]) from 

validation studies or literature reviews, and using this information to adjust study results. 

Often, this adjustment is accomplished using simple algebraic manipulations of the 

contingency table. Probabilistic bias analysis extends this basic approach by allowing the 

investigator to assign a probability distribution to each bias parameter, sample randomly 

from the distribution, and perform the bias analysis repeatedly to produce a distribution of 

the adjusted measure of association. These probabilistic methods allow investigators to 

acknowledge uncertainty in choice of bias parameters and are more frequently used now that 

they are available in widely used software such as SAS, Stata, and Excel.2,9,15

There is discussion in the literature on choosing values or distributions of sensitivity and 

specificity for bias analyses of exposure misclassification.2,3 Relatively less emphasis has 

been given to the importance of correctly specifying in the analysis whether 

misclassification is nondifferential or differential. In most studies, it is unclear whether 

nondifferential misclassification (sensitivity and specificity are the same for cases and non-

cases) or differential misclassification (sensitivity and specificity differ between cases and 

non-cases) is the more appropriate assumption, unless internal validation data are available – 

in which case sensitivity and specificity can be estimated directly, albeit often with error. It 

has previously been shown that assuming nondifferential misclassification in a bias analysis 

when misclassification is truly differential can produce a result further from the truth than 

the unadjusted estimate.16,17 Investigators might be hesitant to assume differential 

misclassification unless outcome-specific estimates of sensitivity and specificity are 

available or the investigator has other data specifying how they differ between cases and 

non-cases. In the literature, there are examples of bias analyses that use assumptions of 

nondifferential misclassification only13,14 or both nondifferential and differential 

misclassification.10–12 The potential effects of other types of incorrect assumptions have not 

been explored in depth.

The purpose of this study is to illustrate the potential sensitivity of bias analysis results to 

incorrect assumptions of nondifferential or differential misclassification of a binary variable. 

Through simulations, we create datasets with nondifferential and differential exposure 

misclassification, and we adjust for this misclassification using correct and incorrect 

assumptions about misclassification in probabilistic bias analyses. We then use data from the 

National Health and Nutrition Examination Survey (NHANES) to show how incorrect 

assumptions can affect the results of a bias analysis in an epidemiologic study. In the 

simulated datasets and in NHANES, both true and misclassified versions of exposure are 

known, and so we can evaluate the success of our adjustments.
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EXAMPLE 1: SIMULATED DATA

Methods

We began with 2 datasets with 10,000 simulated study participants each. In the first, we 

assigned a 10% disease prevalence and a 10% exposure prevalence among both cases and 

non-cases (odds ratio (OR) = 1.00). In the second, we assigned a 10% disease prevalence, 

12.5% exposure prevalence among cases, and a 10% exposure prevalence among non-cases, 

to create a weak association between exposure and disease (OR = 1.29) (Table 1). No 

specific study design is implied in our simulations (i.e, cohort, case-control, cross-sectional), 

and we use the OR as our measure of association because it can be calculated for all study 

designs.

We then made 4 copies of each dataset, introducing a different type of exposure 

misclassification in each (2 nondifferential and 2 differential exposure misclassification 

scenarios). We used Bernoulli trials to randomly misclassify the simulated study participants 

under a given sensitivity and specificity. For the 2 nondifferential misclassification datasets 

(“exactly nondifferential” and “approximately nondifferential” misclassification, to be 

further discussed below), cases and non-cases were misclassified with Se = 0.90 and Sp = 

0.90 independent of disease status. For differential misclassification, we created one dataset 

in which cases had higher sensitivity and specificity than non-cases (Secase = 0.95, Spcase = 

0.95, Senon-case = 0.90, Spnon-case = 0.90) and one in which cases had lower sensitivity and 

specificity than non-cases (Secase = 0.85, Spcase = 0.85, Senon-case = 0.90, Spnon-case = 0.90). 

For convenience, misclassification scenarios in which cases have more accurate 

classification than non-cases will be referred to as “differential A misclassification” and 

scenarios in which cases have less accurate classification than non-cases will be referred to 

as “differential B misclassification”.

We then adjusted for exposure misclassification in these datasets to determine if we could 

obtain a less biased estimate of the true OR, even if using incorrect assumptions about 

nondifferential or differential misclassification in the bias analysis. To adjust for 

misclassification, we used a common algebraic method that involves back-calculating 

expected cell counts for the correctly classified 2 x 2 contingency table given cell counts for 

the misclassified contingency table and estimates of sensitivity and specificity (Table 2).3 

Because the method uses contingency tables to adjust for bias, it can be used for other 

measures of association calculated from contingency tables, such as the risk difference or 

risk ratio.

We implemented a probabilistic analysis by specifying triangular distributions for sensitivity 

and specificity.2,3 Triangular distributions were chosen over other options such as 

trapezoidal distributions because they allow specification of a single estimate with the 

highest probability of being chosen, rather than a range of values; this most closely matches 

our scenarios in which we designated a single value as most likely. Sensitivity and 

specificity values (as described below) were used as the modes of their respective triangular 

distributions. The maximum and minimum values for the triangular distributions were 

assigned to be +/− 0.05 of the mode for sensitivity and specificity. The distributions were 

truncated when necessary so all values fell between 0.5 and 1.00, inclusive. At each of 
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10,000 iterations, one value of sensitivity and one value of specificity were randomly chosen 

from the triangular distributions for cases and again for non-cases to calculate the 

misclassification-adjusted OR.

For each of the misclassified datasets in the bias analysis, we adjusted for misclassification 

using 4 assumptions: exactly nondifferential, approximately nondifferential, differential A, 

and differential B misclassification. We use the term “exactly nondifferential” to mean that 

we used identical values of sensitivity and specificity for the cases and the non-cases. 

“Approximately nondifferential” means that the sensitivity and specificity triangular 

distributions were the same for cases and non-cases, but sensitivity and specificity values 

were chosen independently from the same triangular distribution, so that values could differ 

between cases and non-cases by chance (i.e., numerically there might be differential 

misclassification).

We chose values of sensitivity and specificity for the adjustments to be as close to the true 

values as possible so as not to conflate the effects of choosing incorrect values of sensitivity 

and specificity with the effects of making incorrect assumptions about nondifferential or 

differential misclassification. However, under scenarios where incorrect assumptions were 

made, no “true” values of sensitivity and specificity existed, and so we had to make alternate 

assumptions. The values of sensitivity and specificity used in each bias analysis adjustment 

(see eTable 1) were calculated as follows.

Making correct assumptions—When a correct assumption was made, sensitivity and 

specificity were calculated directly from the simulated population. For nondifferential 

misclassification, sensitivity and specificity were calculated from the whole population 

(cases and non-cases together). For differential A and B misclassification, sensitivity and 

specificity were calculated separately for cases and non-cases, and these values were used in 

the analysis.

Making incorrect assumptions—When assuming nondifferential misclassification, 

sensitivity and specificity were calculated from the whole population (cases and non-cases 

together). When assuming differential A, sensitivity and specificity for non-cases were 

calculated directly from the non-cases; sensitivity for cases was assumed to be sensitivity for 

non-cases + 0.05, and specificity for cases was assumed to be specificity for non-cases + 

0.05. When assuming differential B, sensitivity and specificity for non-cases were calculated 

directly from the non-cases; sensitivity for cases was assumed to be sensitivity for non-cases 

– 0.05, and specificity for cases was assumed to be specificity for non-cases – 0.05.

We calculated the ratio of the misclassification-adjusted OR to the true OR (calculated using 

the known true exposure status). We will refer to this metric as the ratio of odds ratios 

(ROR); ROR=1.00 signifies no bias. Results are presented as the median ROR and 95% 

simulation interval (SI). The 95% SI represents the 2.5th and 97.5th percentiles of the ROR 

distribution generated by simulation. If the sensitivity and specificity values chosen in the 

analysis produced a negative OR, we did not include it in the calculation of the OR, ROR, or 

95% SI. All analyses were conducted in SAS version 9.3 (SAS Institute, Cary, NC) (see 

eAppendix 1 for SAS code).
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Results

For both scenarios of OR = 1.00 and OR = 1.29, when correct assumptions about 

misclassification were made, results were on average unbiased or nearly unbiased (median 

ROR range = 1.00 to 1.01). The exception was the situation when misclassification was truly 

approximately nondifferential; in this scenario, no adjustment provided an unbiased result, 

given our assumptions (Table 3). There was little difference in results between scenarios in 

which the true association was null or weakly positive, although there was slightly less bias 

when the association was non-null. When misclassification was truly nondifferential, the 

assumption of either differential A or differential B misclassification produced biased results 

on average, but the biases were in different directions. When differential A was the true type 

of misclassification, all incorrect assumptions underestimated the magnitude of the 

association. When differential B was the truth, all incorrect assumptions overestimated the 

association. The 95% SIs included the true (null) value under some assumptions but not 

others.

Compared with the misclassified (unadjusted) ORs, the misclassification-adjusted ORs were 

closer to the truth only when the correct assumption was made for exactly nondifferential, 

differential A, or differential B misclassification (i.e., results were unbiased). Under all 

incorrect assumptions and for all assumptions when the truth was approximately 

nondifferential, the adjusted OR was farther from the truth than the unadjusted estimate.

EXAMPLE 2: DATA FROM AN EPIDEMIOLOGIC STUDY

Methods

In this example, we investigate an association between obesity and diabetes in NHANES 

using literature estimates of sensitivity and specificity, thereby combining the effects of 

making an incorrect assumption of nondifferential and differential misclassification with 

potential misspecification of the sensitivity and specificity distributions.

We included non-pregnant women aged 18 to 49 participating in NHANES between 1999 

and 2010. NHANES uses a complex, multistage, probability sampling design to select 

participants from the civilian, non-institutionalized population of the United States.18 

NHANES participants complete an in-person interview during which they self-report height 

and weight. One or two weeks later, they visit a mobile examination center during which 

their height and weight are measured. Women with missing values for self-reported or 

measured height or weight were excluded from our analysis.

Obesity (exposure) was defined as body mass index ≥ 30 kg/m2, calculated as weight in 

kilograms divided by squared height in meters. The reference group for all our analyses is 

non-obese women (body mass index <30 kg/m2). We will refer to obesity status calculated 

from self-reported height and weight as “self-reported obesity” (misclassified exposure), and 

obesity status calculated from measured height and weight as “measured obesity” (true 

exposure). For the purposes of this example, we assume that measured obesity is measured 

without error.
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Self-reported diagnosis of diabetes (outcome) was obtained by questionnaire. In our 

analysis, no distinction was made between type 1 and type 2 diabetes. Women who reported 

“borderline” diabetes were categorized as having no diabetes diagnosis. We excluded 

women with missing data on diabetes status. For simplicity, we assume that diabetes status 

was reported with no misclassification.

In this analysis, our purpose was to simulate a bias analysis for which values of sensitivity 

and specificity were obtained through literature review (external validation data). We 

searched the literature for studies presenting sensitivity and specificity for self-reported 

compared with measured obesity among adult females in the United States (see eAppendix 2 

for literature search details). We excluded estimates from published NHANES data because 

our purpose was to approximate an adjustment for misclassification when internal validation 

data were unavailable.

Based on the results of the literature review, we created triangular distributions for Se and 

Sp (described further in Results). We conducted the bias analysis using the same 

probabilistic adjustment method previously described and using the same 4 assumptions: 

exactly nondifferential, approximately nondifferential, differential A, and differential B 

misclassification. Probabilistic adjustment for misclassification was conducted over 10,000 

iterations to generate a distribution of the misclassification-adjusted prevalence odds ratio 

(POR). Results are presented as the median POR and 95% SI and as median ROR and 95% 

SI. For simplicity, in this example we did not take into account in the analysis the complex 

sampling design of NHANES and as such, the results should not be interpreted as being 

representative of the United States population.

Results

We identified 5 published studies19–23 including estimates of sensitivity and specificity that 

met inclusion criteria (see eTable 2 for study details). Because most estimates of sensitivity 

were near 0.90, we chose this as the mode of the triangular distribution and assigned a 

minimum and maximum of 0.85 and 0.95 to allow for uncertainty. For specificity, we chose 

a mode of 0.97 based on the average of all estimates and the minimum (0.94) and maximum 

(1.00) values of the distribution based on the highest and lowest estimates obtained through 

literature review. No study provided diabetes-specific estimates of sensitivity or specificity.

In our NHANES population of 8,123 women, the POR between measured obesity and 

diabetes was 6.06 and the misclassified POR between self-reported obesity and diabetes was 

5.53 (ROR=0.91). After adjusting for misclassification, misclassification-adjusted median 

PORs ranged from 6.39 to 9.37 (median ROR range = 1.05 to 1.55) (Figure 1). All 

adjustments overestimated the magnitude of the association.

The misclassification assumption producing estimates nearest to the truth was differential 

misclassification A (POR = 6.39 [95% SI = 5.24 – 7.96; ROR = 1.05 [95% SI = 0.87 – 

1.31]). The true misclassification type in NHANES most closely resembled differential 

misclassification A, which explains why this estimate was the least biased. However, our 

estimates of sensitivity and specificity from literature review were inaccurate. The true 
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sensitivity was 0.09 higher in cases than non-cases (we assumed 0.05 higher) and the true 

specificity was 0.01 lower in cases than non-cases (we assumed 0.05 higher) (Table 4). This 

explains why the final estimate was slightly biased.

We repeated the analyses using sensitivity and specificity estimates abstracted from each of 

the 5 studies identified in the literature review separately (see eTable 3 for sensitivity and 

specificity values) to determine if any one study could have provided a more accurate 

estimation of sensitivity and specificity. Under the most accurate assumption (differential 

misclassification A), median misclassification-adjusted PORs ranged from 6.15 to 7.11 

(median ROR range = 1.01 – 1.17) (Figure 2). All included the true POR of 6.06 in the 95% 

SI.

DISCUSSION

We presented examples in which adjustment for exposure misclassification was undertaken 

using various assumptions about differential and nondifferential misclassification. Using 

simulations and data from an epidemiologic study, we found that making incorrect 

assumptions about exposure misclassification can produce “bias-adjusted” results that are 

biased, and in some cases more biased than the unadjusted estimates.

Investigators are encouraged to be cautious when presenting and interpreting results from 

bias analyses because results are valid only if the assumptions used in the analysis at least 

approximate the truth.2 In discussions of bias analysis in the literature, more emphasis has 

been given to choosing distributions of sensitivity and specificity for bias analysis than to 

choosing the correct assumption regarding nondifferential or differential misclassification. 

This is not surprising, given that outcome-specific sensitivity and specificity can be difficult 

to find in the literature, thus providing no evidence for suspecting if misclassification might 

be differential or not. Published validation studies providing such information would be 

useful contributions to the literature, facilitating the addition of bias analyses to 

epidemiologic studies by providing estimates of sensitivity and specificity as evidence-based 

starting points. However, there will be no guarantee that the values of sensitivity and 

specificity from one study will be generalizable to another.

In our examples, making an incorrect assumption about nondifferential or differential 

misclassification produced biased results. Taking uncertainty into account in the analysis by 

assigning probability distributions to Se and Sp was not sufficient to make up for the 

incorrect assumption, with the 95% SIs often not including the true value. Widening our 

triangular distributions might have allowed the 95% SI to cover the true value more 

frequently, although widening the distribution must be balanced against the ability to be 

sufficiently precise to interpret results from the analysis.

In our analyses, we considered two types of nondifferential exposure misclassification: 

“exactly” and “approximately” nondifferential misclassification. Exactly nondifferential 

misclassification (cases and non-cases have the exact same values of sensitivity and 

specificity) is rare in reality, because even if misclassification operates through a 

nondifferential mechanism of systematic error, random error will likely make sensitivity and 
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specificity differ between cases and non-cases. We have referred to scenarios in which 

sensitivity and specificity differ between cases and non-cases by chance as “approximately” 

nondifferential misclassification, even though numerically this situation might appear to 

resemble differential misclassification. This is a potentially realistic scenario for many 

studies, in which the mechanism is nondifferential, but sensitivity and specificity likely 

differ by chance. In our simulated study results, when approximately nondifferential 

misclassification was the truth, none of our adjustment assumptions provided unbiased 

estimates of the magnitude of the association.

In the simulated data, when correct assumptions about nondifferential or differential 

misclassification were made, the results were on average unbiased even though some 

individual bias-adjusted ORs deviated substantially from the truth. In these simulations, we 

knew the true values of sensitivity and specificity in the population and used them in the 

analysis. If incorrect estimates of sensitivity and specificity were used to adjust for 

misclassification, results could be biased even when making the correct assumption about 

misclassification being differential or not. In the NHANES example, our estimates of 

sensitivity and specificity from literature review were not always accurate. As a result, none 

of the adjustments produced an unbiased estimate on average. However, the simulations 

based on 5 literature review estimates of sensitivity and specificity produced RORs ranging 

from 1.01 to 1.17 under the most appropriate assumption of differential A misclassification. 

This suggests that, if values of sensitivity and specificity are misspecified but still 

reasonably close to the true values, then results near to the truth can still be obtained.

We chose NHANES as the source of data for this analysis because both self-reported and 

measured versions of the obesity variable were available, allowing evaluation of the 

potential impact on results of making correct and incorrect assumptions. Because we used a 

specific dataset with its accompanying limitations, results from our analysis might not be 

generalizable to all bias analysis results. For example, because NHANES participants are 

likely aware they would be weighed and measured after self-reporting their weight and 

height, they might have reported their weight and height more accurately than persons who 

do not know they will be weighted, making it difficult to find suitable estimate of sensitivity 

and specificity from literature review. In addition, we used unweighted NHANES data in 

our analysis, and the applicability of literature estimates of sensitivity and specificity to the 

NHANES unweighted sample is unknown. Also, we used potentially misclassified self-

reported diabetes status as the outcome and did not adjust for potential confounders such as 

age or sex, which could have affected our results. However, all investigators will face 

similar issues when conducting bias analysis for exposure misclassification. Our ability to 

produce fairly unbiased estimates when making a correct assumption about the type of 

misclassification in the face of these limitations should be encouraging.

In the absence of validation data (and even when validation data are available, because 

results of validation studies are themselves subject to error), the rationale for choosing 

nondifferential versus differential misclassification in a bias analysis is often left to the 

investigator’s perception of how misclassification occurred in the study. This commonly 

consists of a qualitative description of the possible sources of bias without presentation of 

evidence supporting the decision.24 This is similar to the qualitative discussion of the 
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direction and magnitude of bias that quantitative bias analysis is meant to guard against. 

Unfortunately, this situation is difficult to avoid because there is rarely sufficient 

information available to determine whether nondifferential or differential misclassification is 

most likely for a given study design and method of exposure measurement. For differential 

misclassification, the magnitude of the difference in sensitivity or specificity between cases 

and non-cases is typically unknown. Even if a certain misclassification process is strongly 

suspected (for example, assuming nondifferential misclassification in a prospective cohort 

study in which exposure is measured before disease occurs), there is no guarantee that this 

type of misclassification actually occurred in the study.25 By chance, sensitivity and 

specificity could have differed between cases and non-cases, producing differential 

misclassification instead of nondifferential misclassification, or vice versa.26 Factors aside 

from chance are also important. For example, when exposure categories are combined, 

differential misclassification can be produced even if the measurement error or 

misclassification process on the original variable was nondifferential.16,25,27 When 

presenting results, investigators should clearly state that the results of their analysis are valid 

only if their assumptions were correct. Providing evidence or a rationale to support choice of 

assumptions would assist the reader in evaluating the likelihood that a correct assumption 

was made, although it will not be possible to know this with certainty.

An important role for bias analysis in epidemiologic studies is producing ranges of plausible 

estimates rather than providing a single bias-adjusted effect estimate as the final result. 

Without knowing whether misclassification was truly differential or nondifferential in our 

NHANES example, we would have no evidence for choosing the results of one assumption 

over the others as the most likely. However, we might conclude with some confidence that 

exposure misclassification does not account for the observed association, given that none of 

the 95% SIs contained the null value (POR = 1) under any assumptions. In addition, all of 

the results suggested that exposure misclassification produced a bias towards the null (i.e., 

the true POR was larger than the misclassified POR), which is valuable information to have 

even if the exact magnitude of the POR is uncertain. However, it should be noted that we 

tested only a small number of the possible combinations of sensitivity and specificity 

distributions and misclassification assumptions (e.g., we did not include scenarios in which 

sensitivity was higher for cases but specificity was higher for non-cases). Although our 

analyses correctly predicted that bias was truly toward the null, it is possible that other 

assumptions would not have produced the same results.

In this study, we presented examples demonstrating that making inaccurate assumptions 

about nondifferential or differential misclassification has the potential to produce biased 

results when adjusting for exposure misclassification. In our examples, using an incorrect 

assumption created more bias than using the unadjusted estimates, highlighting the fact that 

results from bias analyses do not necessarily represent an improvement over unadjusted 

estimates, but simply provide a range of plausible estimates under various assumptions. 

Investigators should recognize the possibility of making incorrect assumptions during 

adjustment for bias and consider reporting results based on various assumptions about 

misclassification (i.e., allowing sensitivity and specificity to be the same and different 

between cases and non-cases), recognizing that the type of misclassification occurring in the 

analysis is unknown and the choice of assumptions can affect results of the bias analysis. 
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Although this strategy might not provide a single point estimate as the result, bias analysis 

remains a useful method for providing plausible ranges of the effect estimate in the absence 

of information on exposure misclassification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ratio of odds ratios (ROR) and 95% simulation intervals after adjusting for exposure 

misclassification under one of four assumptions about exposure misclassification in a study 

of obesity and diabetes in the National Health and Nutrition Examination Survey. The solid 

horizontal line indicates no bias (ROR = 1.00) and the dotted horizontal line indicates the 

result when using the misclassified (unadjusted) values in the analysis (ROR = 0.91).
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Figure 2. 
Ratio of odds ratios (ROR) and 95% simulation intervals after adjusting for exposure 

misclassification in a study of obesity and diabetes in the National Health and Nutrition 

Examination Survey, using estimates of sensitivity and specificity from 5 studies, under the 

correct assumption of differential A misclassification. The solid horizontal line indicates no 

bias (ROR = 1.00) and the dotted horizontal line indicates the result when using the 

misclassified (unadjusted) values in the analysis (ROR = 0.91).
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Table 1

Contingency Tables for 2 Examples of True Associations Between Exposure and Disease.

Disease

True Odds Ratio = 1.00 Exposure True Odds Ratio = 1.29 Exposure

Yes No Yes No

Yes 100 900 125 875

No 900 8,100 900 8,100
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Table 2

Relationships Between True (Correctly Classified) and Observed (Misclassified) Exposures.

Disease

True Exposure Misclassified Exposure

Yes No Yes No

Yes A B a = Se1A + (1-Sp1)B b = (1-Se1)A + Sp1B

No C D c = Se0C + (1-Sp0)D d = (1-Se0)C + Sp0D

Abbreviations: Sei, sensitivity in cases (i = 1) and non-cases (i = 0); Spi, specificity in cases (i = 1) and non-cases (i = 0).
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Table 3

Ratio of Misclassification-Adjusted Odds Ratio to True Odds Ratio over 10,000 Simulations when Making 

Correct and Incorrect Assumptions about Nondifferential and Differential Misclassification.

Simulation Trutha,b Adjustment Assumptionc

True OR = 1.00 True OR = 1.29

Median Ratio of Odds Ratio (95% Simulation 
Interval)d,e

1 Exactly nondifferential Exactly nondifferentialf 1.00 (1.00–1.00) 1.00 (0.93–1.19)

2 Approximately nondifferential 1.01 (0.46–2.19) 1.01 (0.52–2.13)

3 Differential A 1.54 (0.89–3.16) 1.41 (0.84–2.90)

4 Differential B 0.43 (0.03–1.22) 0.53 (0.11–1.31)

5 Approximately nondifferential Exactly nondifferential 1.30 (1.21–1.58) 1.24 (1.10–1.66)

6 Approximately nondifferentialf 1.31 (0.68–2.82) 1.25 (0.69–2.62)

7 Differential A 1.84 (1.09–3.83) 1.65 (1.00–3.41)

8 Differential B 0.70 (0.14–1.74) 0.77 (0.30–1.77)

9 Differential A Exactly nondifferential 0.56 (0.19–0.69) 0.65 (0.54–0.68)

10 Approximately nondifferential 0.56 (0.10–1.39) 0.65 (0.25–1.45)

11 Differential Af 1.01 (0.49–2.14) 1.00 (0.55–2.07)

12 Differential B 0.18 (0.02–0.65) 0.24 (0.02–0.77)

13 Differential B Exactly nondifferential 1.95 (1.67–2.77) 1.77 (1.48–2.62)

14 Approximately nondifferential 1.97 (1.16–3.98) 1.78 (1.08–3.58)

15 Differential A 2.46 (1.53–4.94) 2.15 (1.36–4.31)

16 Differential Bf 1.01 (0.40–2.23) 1.00 (0.49–2.14)

Abbreviations: OR, odds ratio.

a
Nondifferential misclassifications: sensitivity for cases (Secase) = specificity for cases (Spcase) = sensitivity for controls (Senon-case) = 

specificity for non-cases (Spnon-case) = 0.90. Differential A: Secase = Spcase = 0.95, Senon-case = Spnon-case = 0.90. Differential B: Secase = 

Spcase = 0.90, Senon-case = Spnon-case = 0.95.

b
Misclassified ORs for true OR = 1: exactly nondifferential = 1.00, approximately nondifferential = 1.14, differential A = 0.75, differential B = 

1.42. Misclassified ORs for true OR = 1.29: exactly nondifferential = 1.12, approximately nondifferential 1.28, differential A = 0.88, differential B 
= 1.61.

c
Exactly nondifferential: Se and Sp for cases and non-cases calculated from total population and are the same. Approximately nondifferential: Se 

and Sp for cases and non-cases drawn from the same distribution but do not necessarily have the same values; the modes of the distributions are the 
actual values of Se and Sp calculated from the total population. Differential A and B: Se and Sp for non-cases calculated directly from non-cases; 
for the correct assumption, Se and Sp for cases are the true values for cases; for incorrect assumptions, the modes of the Se and Sp distributions for 
cases are 0.05 higher (differential A) or lower (diferential B) than non-cases.

d
Lower and upper bounds are the 2.5th and 97.5th percentiles of the ratio of odds ratio distribution generated by simulation.

e
Percentage of simulations generating negative ORs: simulation 4 = 8% for OR = 1, <0.1% for OR = 1.29; simulation 8 = <0.1% for OR = 1; 

simulation 9 = 0.2% for OR = 1; simulation 10 = 0.2% for OR = 1; simulation 12 = 56% for OR = 1, 20% for OR = 1.29.

f
Correct assumption.
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